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General response function for interacting quantum liquids
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Linearizing the appropriate kinetic equation we derive general response functions including self-consistent
mean fields or density functionals and collisional dissipative contributions. The latter ones are considered in
relaxation time approximation conserving successively different balance equations. The effect of collisions is
represented by correlation functions which are possible to calculate with the help of the finite temperature
Lindhard random-phase approximation expression. The presented results are applicable to the finite tempera-
ture response of interacting quantum systems if the quasiparticle or mean-field energy is parametrized within
Skyrme-type functionals including density, current, and energy dependencies which can be considered alter-
natively as density functionals. In this way we allow to share correlations between density functional and
collisional dissipative contributions appropriate for special treatment. We present results for collective modes
such as the plasmon in plasma systems and the giant resonance in nuclei. The collisions lead in general to an
enhanced damping of collective modes. If the collision frequency is close to the frequency of the collective
mode, resonance occurs and the collective mode is enhanced showing a collisional narrowing.

PACS numbsg(s): 05.20.Dd, 52.65-y, 05.30—d, 03.65.Db

[. INTRODUCTION nal perturbation will contain the effect of Skyrme mean field
and additionally the effect of residual interaction. While this
The response of matter to an external perturbation is thechema and the results are of general interest for any inter-
main source of knowledge about the matter itself. For in-acting Fermi or Bose system, we will only mention applica-
stance, in plasma physics the polarization funclibfy, ) tion examples from nuclear matter and plasma physics. For
is linked via the dielectric functior(q,) to the electrical the latter one we might consider the energy functional as a
conductivity o(q,w) by parametrization of the self-energy in line with the philosophy
_ of density functional theory. In this way we have the free-
I dom to share the correlations between mean-field-like den-
€(,0)=1=V()Il(q,0) =1+ Zo(q,0). @ sity functional parametrizations and explicit collisional- or
dissipative-like correlations which are condensed in a relax-
In nuclear matter, e.g., the response functionll/e allows  ation time. Of course, when deriving this parametrizations
one to study excitations and giant resonances which in turmicroscopically special care is required to avoid double
yields information about the equation of state such as theounting of correlations.

isothermal compressibility which is given by Specifically, we want to obtain the density, current, and
energy responsg, x;,xe Of an interacting quantum system
1/dn 1 do 1
IS @);ﬁ;@of o e @) @ o\ [ x 1
5VJ — X3 VeXtEX 0 VeXtE Xvext (3)
or to calculate fluctuations and diffusion coefficients. SE Xe 0

Two lines of theoretical improvements of the response
function have been presented in print recently. The first ongo the external perturbatiok® provided the density, mo-
starts from time-dependent Hartree-Fq@DHF) equations  mentum, and energy are conserved
and considers the response of nuclear matter described by a
time reversal broken Skyrme interactih2]. The other line
tries to improve the response by the inclusion of collisional n(R,t):; <<DJ*(R)(I)J'(R)>:S% f(p.R,Y),
correlationg 3—6] and for multicomponent systenhg,8]. In
this paper we want to combine both lines of improvements Ve—Va
into one expression and derive therefore the response func- J(R,t)=2 TCD;‘(R’)@J-(R)>
tion from a kinetic equation including mean-fie{8kyrme J :
and collisional correlations.
We consider here interacting matter which can be de- =s>, pf(p,R,1),
scribed by an energy functiondéinean field £ originally P
introduced by Skyrmd9,10] and the residual interaction.
The latter one we condense in a collisional integral addi- _ _
tional to the TDHF equation. Then the response to an exter- E(R.Y 2 (HR.1) S% s(PROT(PRY. (@

R=R’
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Here s is the spin-isospin degeneracy and we express the
observables in terms of the Wigner functibfp,R,t) which

is related to the one-particle density operaidy
iq q - q
f(p,R,1)=2 € R< p+5lplp— §> (5
q
and introduce the quasipartici8kyrme energy operatoft’
e(pRO=3 e“”‘< p+ Zip- 9> ©®)
q 2 2

in the spirit of Landau theory = SE/ 5f. We will neglect the
contributions of energy gain which arise from noninstanta-
neous collisiong11]. Here the energy functional or mean-
field (Skyrme energye is assumed to be parametrized as
[12]

X 1
E=-V 2mE—i—(VJ+JV)

1
%+61n

V+ €2n+ €1
+€3V2n+ent L (7

Please note that the occurrence of current contributieds
breaks explicitly the time invariance. These terms appear
with the same coefficierd; as the effective mass and energy
contribution in order to ensure Galilean invariance. The den-
sity dependencer#1 deviating from the one arising by
Skyrme three-body contact interaction has been introduced
and compared with experiments in REE3].

> (f—fF)=0,
p
> p(f—fH)=0,
p

% e(f—fE)=0. (10)

Taking this into account we can express the deviation of the
observablesp=1p,e from equilibrium consideringsf=f
_fozf_fLE+fLE_f0 as

5¢<q,w>=§ $6f(p,q,»)

=§ B(fE—10)

q q
fol p+ 5 _fo(p_z)
= ¢
P I R
€p p 2 0 2
Su—g 20 50— T H 5t 11
X| —ou—dgy Q- T Y

where we have performed Fourier transform —iw andr

—id. In the last line we restrict to thaear responsef Eq.

II. DERIVATION OF GENERAL RESPONSE FUNCTION

(9). We assume for simplicity a homogeneous equilibrium

foleg(p)) such that only the deviations¢(r,t) and

We start the derivation of the response from the quantumny

f(p,r,t) are space dependent. This is no principle restric-

kinetic equation for the density operator in relaxation timetion but otherwise many later algebraic expressions would

approximation

LE_p

hri[E+ et )= —, ®)

where the relaxation is considered with respect to the local

density operatoE)LE or the corresponding local equilibrium
(LE) distribution function

fLE(erit):fO T(R,t)

©)

with the (Fermi-Bose distribution f,. (The quasiclassical
Landau equation follows from the gradient expansion
(9l at) f+dped f—d,edpf=—[(f—F)/7].) This local
equilibrium is given by a local chemical potentjal a local
temperaturd’, and a local mass motion moment@nThese
local quantities will be specified by the requirement that the
expectation values for density, momentum, and energy are
the same as the expectation values performed fvith

A. Conservation laws

From Eq.(9) we see that the conservation laws for den-
sity, momentum, and energy are fulfilled if the correspond-
ing expectation value of the collision side vanishes

take the form of integral equations. FurthefQ(q,t)
=0g6Q(q,t) is employed. With the abbreviation

q q
SRCI
a‘ﬁ:% ¢ q q
oo
=04(0),
q q
Je fo(p+§ _fo<p_§)
b"’zzp P95 q q
NPT
:gqﬁqﬂpso(o).
q q
5 4eomn APT2 o3|
©s P 7 q q
o| Pt 5 |~ 80| P~ 5
1 e
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and the correlation function SN Su Sn o1
q q I\ 8dq | =B| Q| +V| 8Jq | +| Gpq | V¥ (17)
fol P+ 3 —fo(P— 5) SE 5T SE 9.
gp(@)=s> ¢ (13)
p eol Pt 5 _80< -3 —w—i0 together with set14)
. I . S S
we can write the deviation of the observables from equilib- : H
rium according to Eq(11) explicitly g | =A| Q. (18
SoE 6T

on=— 5,LLa1_ 5le_ 5TC]_,

The matrices are
0Jq=Q- 3= — duag,— 0Qby,— 6Ty,

91Vot0p2Vy OpqV1 9iVo

SE=—6Sua,— 6Qb_—4Tc,. (14
V=| 9paVot Ip2pqVs Y(pg)2V1 GpqV2 ,
Instead of the vector equation for the currdnive consider 9. Vo+gp2.V. JepgV g.v i
. . . . . . e € pceV4 epqV 1l eV2 o+ —
the projection onto the direction gf This simplifies matters 7
as long as we have no active media afm.
d e f
B. Response from kinetic equation B=—| dyq €q fpq],
To derive the response function we will obtain a second d e f.
equation set from linearizing the kinetic equati@ and the
corresponding balance equations. Fourier transform a, by ¢
— —iw andr—iq; the equation8) can be linearized
q q A=—| ayq bpg Cpq |, (29
—iwsf+il e, p+g — &g p—g) Sf & De  Ce
and the abbreviations are introduced
—ilfo p-l-g —fo(p— g)}[vexf+(vo+v4p2)5n i i
dg= : g¢(w+—)—g¢(0)},
+pQVy 83+ V,5E] o7l T
fol pt 3]~ fol p— 2 i ! 0
Sf 1 ol P E —lo p_z e¢_w7+i g¢qﬁps w+; _g¢q8pe( ) ’
T g g
€0 p+§)_8o( _E) . —-i 1 i 0
p ¢ wr+i T Yoe w+; ~94e(0)
& Eno—
x| —ou—a- = L5Q- OTMN}. (15) i
P —u g¢(w+; —g¢<0)H (20

In Eqg. (15 the mean-field contribution®; will lead just to
self-consistency. The coefficierit§ are linked to parametri- in terms of the correlation functiofi3). The required solu-

zation(7) as tion is obtained from Egq917) and(18) as
2
VOZ%262_61?_63q2+(a+1)n364, 5n gl
8Jq | =(Z-V-BA™H 7! Gpq | V' (2D
580 261 oE ge
=5, . S
4 from which one can read off the response functi(®)s This
Se is the main result of the paper which represents the density,
V2=—O=2mel, momentum, and energy response including nonlinear mean
oE fields and collisions with the fulfillment of density, momen-
tum, and energy conservation.
V4: €. (16)
We can solve Eq(15) for 8f and perform momentum C. Alternative expressions
integrations to obtain the observablés, 6J,, SE. This Before we continue to consider special cases, we would

leads to the following closed equation system: like to express solutiof21) in a slightly more familiar form.
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1. Response in terms of mean-field response we do not want to consider here. The schema of how to
First we assume that we have solved the response withotffclude this is clear after the following considerations. We
collisions 5=0 which would obey the equation understand in the following the mass as effective mass given
by €, in Eq. (7).

(IT-V)&e=Gv*", (22 The different occurring correlation functiort$3) can be
written in terms of moments of the usual Lindhard polariza-
where&={én,8Jq,E}, v**'={V®0,0}, and tion functionII,

g1 9pq Je q q
G(w)=| Ypq Ypa)2 Ipge | - (23 dp fol P+ 5 fo( - E)

I1 =sf n 30

ge gepq gee n (277)3 p q . ( )

—w—i0

Then the response matri@@) without collisions but self-
consistent mean field reads

Xur(@) = (1-V) *G(w). (24) 2o Tollows:
The missing part of the full solution of Eq§l7) and (18) g,=11,,
including the collisions are given b§=¢&,+ ¢ where we
have for{
gpq m(l)Ho,
(1-V-BA YHY{=BA 1&,. (25)
Some algebra leads to the final response 9 :E
_ € 2m’
i
X(w)=XM,: w-l——)
T H4
[ ‘]t 9ep2= o
X l—gl(a)-l— - B.AiJ'XMF w+ —
T T
(26) Ip2pg=Mally,
2. Response in terms of polarization function Ipg)2=— qu n+ mszHO. (31)

The opposite case is the usual way we first solve the equa-
tion without self-consistency by the mean field. This leads 0 go; practical and numerical calculations we can rewrite
the polarization functlorv?:{H,H'J Jlg} V\./hlchlwe use 10 11 py polynomial division into
represent the response function which includes self-
consistency. Without mean field we have from E2fl)

m’w? ~
(I— BA_1)§O=QV6“, (27) HZZ —mn+ q2 HO+H2,
leading to the polarization function - 44
_ H__Elsz_nqu 4mlw LUCK
L i 4= 73 0 4 T gt o
Plw)=(1-BA H G o+ —]|. (28
! 2mlw? ~
The response function can be represented analogously to Eq. N q? I~ 11, (32
(26)
i -t where thell, are the projected moments perpendiculagto
_ -1 - i
X(w)—P(w)[I G et VP(‘*’)] - @29 4nd read
The generalization of the usual forpp=I1/(1—VII) for q q
simple mean fields can be recognized. dp 0-q 2fo| p+ > fo(p— 2)
Ill. CALCULATION OF RESPONSE FUNCTIONS z_j (277)3( 9 ) L
m

In the following we consider some frequently occurring
situations. Therefore we assume only quadratic dispersions w ,
e=p?/2m in the correlation function. To consider the full :ijwdfu I,
quasiparticle(Skyrme energy would correspond to the self-
consistent quasiparticle random-phase approximation which ~2mTIl,,
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q q B. Polarization with collisions: Inclusion of density
B dp 0-q afol p+ E) — fo( p— E) and momentum conservation
HAZJ (2m)° P——4 p-q Next we consider the special case where the density and
q ——w—i0 momentum are conserved. Then the matridesnd B reduce
again to 2< 2 matrices and the calculation of E@7) leads
m o' to
:2(2m)2f d,u’J duIl, -
Cw e i
~8m2T2I1,. (33) i [gpq @ r
g1 ot —| =
. N(pe)2
The corresponding last identities are valid only for nonde- II™{w)=(1-iw7) ——=——01(0).
generate, Maxwellian, distributions with temperatiiteThe [g w+'_
general form of polarization functions is presented as an in- pa T
tegral over the chemical potential of the Lindhard polar- h;—
izationII,. This is applicable also to the degenerate case. In h(pay2 (39)

the following we will discuss successively further involved
results; first for nondegenerate plasmas and then for dege

erate nuclear matter. U\/e have used the fact that according to E81) gp4(0)

=0epq(0)=0 andh,, is defined as in Eq35). With the help
of Eg. (1) we obtain in this way a slightly modified Mermin
A. Polarization with collisions: Inclusion of density dielectric function(36).

and energy conservation

Now we concentrate on the response function without C. Polarization with collisions: Inclusion of density,

mean field and consider only the collisions within density momentum, and energy conservation
and energy conservation. Then the matrigeand 5 reduce Considering all three conservation laws the result from
to 2X 2 matrices. The calculation of ER7) leads to Eq. (29) is
! N
| Gafer 7] H"'Jf<w>=<im—1>(iwra—glm), 39
N w)=(1—iwr)
hy
with
_[h.g1(0)—h;g.(0)]? [ i i]]?
—oTi , 34 N=—1{0cpq @+ —|91[0]—9g. [0 w+ -
hl(hz—h“hl) ( ) g pqg . gl[ ] g [ ]gpq -
+Npg2{91[0](h29,[ 0] —h.g[0])
where we use the abbreviation
+9J0](h1g[0]—h.g:[0])}, (40)
i
hg=04| 0+ —| —w7ig4(0). (35 - ! e r
+=9¢ - ¢ D=0epg @+ - N1Qepq| @+ - heGpg| @+ .
With the help of Eqs(31)—(33) this can be further worked + Qg 0+ ! |h“gpq o+ ! N Gepq @+ ! }
out in terms ofII, but does not lead to a more transparent T T T
form. Let us note that the first term in E@®4) represents just +h, )2{h2— h.hy) (41)
pPq € €€ .

the result if we would have considered only density conser-

ation known as the Mermin polarization functi . . .
vatl W N polarizat unctioal This result together with the former special ca&z®), (34),

(38) are compared in Fig. 1. One sees that the first approxi-

i mation of Mermin(36) is almost identical with the result
_ 9af @+ T 9:(0) (34) where density and energy is conserved. The inclusion of
1T”(ﬂ)):(l—le)h—l- (36)  density and momentum conservati(88) brings the curves

towards the Lindhard result without collisions compared

with the inclusion of density conservation only. Finally, the

Of course, the limit of vanishing collisions—« ensures complete result with the inclusion of density, momentum,
that the Lindhard resulll () appears since and energy conservatidB9) changes the results again in the
direction of the result for density and energy conservation

but is less pronounced. This qualitative behavior of the dif-

im 1—hi¢wT:g¢(0)' (37) Ierent approximations is observed for other relaxation times
00.

T—®
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4 T 7 T
6 ]
T, 3¢} T, 5L ]
= =
4 - =
e ! -
E o1 E 2f :
1r ]
0 0
0 0 2
7 T 10 T
- 5 x=0.01 | — x=0.01
= E 5
>I 3 T=12000K >I T=12000K
e 1t I T e
_1 1 _5 1
0 2 0 1 2
wlw, o/,
5 = T 15 - T
,/ ‘\v Lindhard =1/w,
— 4r D, S\ Mermin (density) T —_ —— =5/,
= y e — — (density+energy) = 10 F — - = 1=00 (Lindhard) ]
> 3r / N — - - (density+momentum) 7 >
il / e - == (density+momentum+energy) !
= 24t / .2 T,
E / TR E S5 ]
.= iy \_\~ | =
0 S 0
0 1 2 0 1 2
(D/(Op (1)/(!)p
FIG. 1. The dielectric functios=1—VII for a one component FIG. 2. The dielectric functioe =1— VII for a one component

plasma system in different approximations. The inverse Deby&lasma system with the inclusion of density, momentum, and en-
length isk?=4mne?/T and the energy is scaled in plasma fre- ergy conservatior{39) for different relaxation times. The param-
quencie&ugz «?T/m. The relaxation time is chosen arbitrarily as eters are the same as in Fig. 1.

7=5/w, and the wave vectog=0.384c. The uppermost panel

shows the excitation function. Since the imaginary part of the response functié®) is
related to the photoabsorbtion yield on nuclei we like to
The effect of relaxation times within the complete resultapply the different approximation&4), (38), or (39) for
(39 is seen in Fig. 2. One recognizes that with decreasinguclear isovector oscillations. We use first a simplified
relaxation time or increasing collision frequency the plasmorskyrme parametrizatiofl4] for V, according to Eq(47)
peak is shifted towards smaller energies. For collision fre-and a relaxation time within a Fermi liquid mode[15,16].
quencies around the inverse plasma frequency there occurs=iom Fig. 3 we see the same qualitative behavior of the
resonance seen in the real part of the dielectric functionifferent approximations as found in Fig. 1. The difference
(middle part of Fig. 2 This translates into an enhanced between the densitidensity-momentuand density-energy
single particle dampinglower panel and the system be- (density-energy-momentuntesult is very small(insets of
comes optically thick. At the same time the collective mode,Fig. 3). An increase of temperature leads to larger damping
the plasma frequency, becomes enhanced. One can considgrall approximationgbottom of Fig. 3. While the density
this as an effect of transferring collisional energy into collec-or density-energy result leads to a pronounced damping of
tive motion. We have here a coherent superposition betweetihe giant resonance the inclusion of momentum conservation
collision frequency and collective frequency resulting into andiminishes this effect again towards the free result.
enhancement of collective motion. Compared with the gen- Let us note that the energy-weighted sum (E&/SR
eral effect of collisions to increase the damping of collective
motion, see Fig. 1, this is the inverse effect which narrows

. . 1 © q2
the collective peak again. — _f -
g dowiIm y 2mn0 (43

D. Response with collisions: Simple mean field

For the case of simple but density-dependent mean fieldS fulfilled numerically for all approximations, however, the

o : ; ~“Convergence is very bad for response including density or
Vo#0 andV;=V,=V,=0 we obtain for the density re density and energy conservation. The inclusion of momen-
sponse from Eq(29)

tum conservation in turn improves the convergence of the
I sum rule appreciable.
= . 42
E. Response without collisions: Skyrme mean field

Herell is the polarization function without mean field but  First we consider the case where we have only Skyrme
with collisions. Dependent on the choice one may use Eganean fields. Then the matrix equati®2®) is solved with the
(34), (38), or (39) for the latter one. result for the density response function
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FIG. 3. The imaginary part of the response
function Imy for nuclear giant dipole resonances
in different approximationgcompare Fig. L The
wave vectorq=0.23 fm ! (=~0.17 k) corre-
sponds to the inverse diameter of the nucleus
208pp according to Ref17]. The inlays show an
enlarged view of the difference between the den-
sity (n), density-energy f-E), and density-
momentum (-p), density-momentum-energy
(n-p-E) approximation, respectively.

1
Vlzg[tz(l"‘2X2)_t1(1+2X1)] (47)

If we use the definitions of Ref1] which are related to ours

Ho IT,,
2
Hz Im,— d HO,
2 4
~ q q
,=1,- ?H 16H0' (48

we obtain the result of Reff1] which was slightly misprinted

1o

—= (49

1—TIoV3— 2VETT o+ (V) 12—, 11 ,]

Vo=V; Mo’ 2Vi (50)
00 g2 1-2nymV;

for nuclear matter densityy.

0.02 .
— T=0.025¢,
(?
£ =017k
5 R
= 0.01 —— Lindhard
'g_ ------------ Mermin (n)
g ---- (n-E)
£ — ()
T N ——- (n=J-E)
N
0.00 T
0.02 .
T=0.1 g
cf_'
£ q=017k,
5
[0}
=
3 0.01 i
g
=
E
]
0.00 i S
0 20
Xvr(o,V;)
I
B VAV V,
l HOVO+ [H2 OH4]_H2 _+V4 aS
2m
(44)
with
— Mow(MwV,+V
Vo=V + M MoV, +Vs) (45)
nmqV,+1
For isovectorial oscillations one has
580 S s qZ
Vo= on VO_Vl?’ XME=
deg 2 with
580
V2= E = 2m\/§ ,
V,= i (46)

F. Response with collisions: Inclusion of density conservation

where theV; are representing the Skyrme parametrization in

and Skyrme mean field

nuclear mattef1] Now we derive the combined result from the mean-field
respons&44) and collisions. We restrict first only the density
Vil ) 1) ts ) o2 at(149 balance conservatidiirst term of Eq.(34)] to get from(11)
o~ ~lo| Xo 2176 X3 5 n E[ 1( X1) sn 5 SE
Sp=——=——=——, (52)
+p(142xp)], a,  ay  a.
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-
£

Lo001 |

14}

=3

El

< FIG. 4. The imaginary part of the response
E function Imy for nuclear giant dipole resonances
! (see Fig. 3 in different approximations. Consid-

0.00 ering the Skyrme interactions SGJIL,18 we

compare the full mean-field response with colli-
sional correlations in densitydotted ling and

T=01¢ densi N
¢ ! ensity, momentum, and energy approximation
—— Skyrme mean field-MF . ’ . "
_f __________ Me{min (density+MF) q=017k, (dasheq ling respectlve_ly,_wnh the coII|_5|on-free
> — — - (density-momentum—energy+MF) mean-field responsgsolid line) for two different
= 001 temperatures.
E)
S
=
E
|
0.00
0
and in Eq.(21) the limit of finite collisions sinceg,,(0)=0, see Eq(31).
d ThereforeV,=V is proposed to ensure the limit of vanishing
< 0 o0 collisions.
a
BA =] O % 0. (52) G. Response with collisions: Inclusion of density, momentum,
Apq and energy conservation and Skyrme mean field
0 o0 E The Skyrme response can be given also for the other cases
a, including energy and momentum conservation. However,

o this does not lead to a more transparent form than the general
Therefore we can solve E¢29) and obtain, similar to Eq. matrix structure(29). Considering the standard effective

(44), Skyrme interaction SGI[18] in Fig. 4 we compare the com-
0) i plete result(21) including energy, momentum, and density
. 91 I~ conservation(dashed ling with the result including only
n —(1— + — V.
X(w)=(1-lo7) h, XMF ¢ T’V') (53 density conservatiof53) (dotted ling. In the result one we

have proposed fov; the collision-free valu&/; in order to
ensure the correct limiting case.
We find again the same behavior for the different approxi-

with

91(0)

Vo=(1-iw7) Vo, mations as in the case of the simplified mean fi¢d). 3).
hy The inclusion of collisions leads to an enhanced damping
. and a shift of the collective peak towards smaller energies.
V.= (1—iwn 9pq(0) V.o Vito(wr) This effect of collisions is less pronounced by the full mean-
1 hpq 1 0+0(w7), field result including density, momentum, and energy conser-
vation (solid ling). The increase of temperature leads to a
- . .9.0) broadening of the resonance struct(mver part of Fig. 3
Vo=(1-iwr) = —Vz, in any case.
€ Again we have checked our results to satisfy the EWSR
~ . 91(0) 1 (e 2
Va=(1-ion) == Vs, (54) —;fo dow |mX=;—mno(1+K), (55)

We should note that the mean-field potentalarising from

the current and effective mass is of a different level of apith the enhancement factar
proximation than the collisional contribution which we re-

stricted in Eq.(52) to the density conservation. This incon-

sistency is visible in the final result fof, in Eq. (54) where

m
=— %) +ta(2+ _
the limit of vanishing collisionsr— does not agree with 1= g [1a(2Hx0) +12(24%2) Ino (56)
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Here « occurs as a consequence of the momentumThe plasmon peak is shifted towards smaller frequencies.
dependent terms in the Skyrme interaction and is defined abhis is accompanied by an enhanced damping. The incorpo-
the deviation from the Thomas-Reiche-Kuhn sum rule in theation of momentum balance diminishes this effect of colli-
case of isovector giant dipole resonant8,2Q. sions.

The result(44) which contains the full Skyrme mean field We observe that an enhancement of the collective mode
but no collisions is in excellent agreement with E8f). The  occurs for collision frequencies near the collectiptasma
approximation(53) including collisions but only density con- frequency. This is the inverse effect of damping due to col-
servation conserves the sum rule onk75% which is a lisions in that the collisions become resonant and the collec-
consequence of the inconsistency of Esf). The inclusion tive mode is enhanced. We consider this as collisional nar-
of density, momentum, and energy conservati@th) con- rowing. Since the momentum conservation is responsible for

serves the sum rulé5) again completely. that effect we suggest that the physical origin is the same as
sometimes discussed with motional narrowing. We would
IV. SUMMARY like to stress that this narrowing is observed relative to the

) ) o broadened mode due to collisions and did not reach the
_ In this paper we have derived the unifying response funceglision-free value. Consequently we have collisional damp-
tion including nonlinear mean fieldSkyrme and collisional  ing every time but near the resonant situation this collisional
correlations. Within this approach one can share correlatlonaamping is diminished.
between an energy functional of mean-figkkyrme param-  similar behavior is found for the case of nuclear matter,
etrization and explicit dissipative correlations condensed ifyhere the collective mode is the giant resonance. For isovec-
the relaxation time. This allows us to also treat dissipativggyig] giant resonances we checked the extended energy
effects in density functional approaches. We see that theighted sum rules and find excellent completion. The re-

known limiting cases are reproduced neglecting either collisponse due to nonlocal mean fields is derived including the
sions or mean fields. Special transparent cases of the unifisffect of collisional correlations.

ing response are discussed.
For a nondegenerate plasma, nL_JmerlcaI results are pre- ACKNOWLEDGMENT
sented. The first order correction given by the Mermin re-
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