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General response function for interacting quantum liquids
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Linearizing the appropriate kinetic equation we derive general response functions including self-consistent
mean fields or density functionals and collisional dissipative contributions. The latter ones are considered in
relaxation time approximation conserving successively different balance equations. The effect of collisions is
represented by correlation functions which are possible to calculate with the help of the finite temperature
Lindhard random-phase approximation expression. The presented results are applicable to the finite tempera-
ture response of interacting quantum systems if the quasiparticle or mean-field energy is parametrized within
Skyrme-type functionals including density, current, and energy dependencies which can be considered alter-
natively as density functionals. In this way we allow to share correlations between density functional and
collisional dissipative contributions appropriate for special treatment. We present results for collective modes
such as the plasmon in plasma systems and the giant resonance in nuclei. The collisions lead in general to an
enhanced damping of collective modes. If the collision frequency is close to the frequency of the collective
mode, resonance occurs and the collective mode is enhanced showing a collisional narrowing.

PACS number~s!: 05.20.Dd, 52.65.2y, 05.30.2d, 03.65.Db
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I. INTRODUCTION

The response of matter to an external perturbation is
main source of knowledge about the matter itself. For
stance, in plasma physics the polarization functionP(q,v)
is linked via the dielectric functione(q,v) to the electrical
conductivitys(q,v) by

e~q,v!512V~q!P~q,v!511
i

v
s~q,v!. ~1!

In nuclear matter, e.g., the response functionx5P/e allows
one to study excitations and giant resonances which in
yields information about the equation of state such as
isothermal compressibility which is given by

k5
1

n2 S ]n

]m D
T

5
1

n2T
lim
q→0

E dv

p

1

ev/T21
Im x~q,v! ~2!

or to calculate fluctuations and diffusion coefficients.
Two lines of theoretical improvements of the respon

function have been presented in print recently. The first
starts from time-dependent Hartree-Fock~TDHF! equations
and considers the response of nuclear matter described
time reversal broken Skyrme interaction@1,2#. The other line
tries to improve the response by the inclusion of collisio
correlations@3–6# and for multicomponent systems@7,8#. In
this paper we want to combine both lines of improveme
into one expression and derive therefore the response f
tion from a kinetic equation including mean-field~Skyrme!
and collisional correlations.

We consider here interacting matter which can be
scribed by an energy functional~mean field! E originally
introduced by Skyrme@9,10# and the residual interaction
The latter one we condense in a collisional integral ad
tional to the TDHF equation. Then the response to an ex
PRE 611063-651X/2000/61~3!/2272~9!/$15.00
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nal perturbation will contain the effect of Skyrme mean fie
and additionally the effect of residual interaction. While th
schema and the results are of general interest for any in
acting Fermi or Bose system, we will only mention applic
tion examples from nuclear matter and plasma physics.
the latter one we might consider the energy functional a
parametrization of the self-energy in line with the philosop
of density functional theory. In this way we have the fre
dom to share the correlations between mean-field-like d
sity functional parametrizations and explicit collisional-
dissipative-like correlations which are condensed in a rel
ation time. Of course, when deriving this parametrizatio
microscopically special care is required to avoid dou
counting of correlations.

Specifically, we want to obtain the density, current, a
energy responsex,xJ ,xE of an interacting quantum system

S dn

d¹J

dE
D 5S x

xJ

xE

D Vext[XS 1

0

0
D Vext[Xnext ~3!

to the external perturbationVext provided the density, mo-
mentum, and energy are conserved

n~R,t !5(
j

^F j* ~R!F j~R!&5s(
p

f ~p,R,t !,

J~R,t !5(
j

K“R2“R8
2i

F j* ~R8!F j~R!L
R5R8

5s(
p

pf ~p,R,t !,

E~R,t !5(
j

^H~R,t !&5s(
p

«~p,R,t ! f ~p,R,t !. ~4!
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PRE 61 2273GENERAL RESPONSE FUNCTION FOR INTERACTING . . .
Here s is the spin-isospin degeneracy and we express
observables in terms of the Wigner functionf (p,R,t) which
is related to the one-particle density operatorr̂ by

f ~p,R,t !5(
q

eiq•RK p1
q

2
ur̂up2

q

2L ~5!

and introduce the quasiparticle~Skyrme! energy operatorÊ

«~p,R,t !5(
q

eiq•RK p1
q

2
uÊup2

q

2L ~6!

in the spirit of Landau theory«5dE/d f . We will neglect the
contributions of energy gain which arise from noninstan
neous collisions@11#. Here the energy functional or mean
field ~Skyrme! energy« is assumed to be parametrized
@12#

Ê52“S 1

2m
1e1nD“1e2n1e1F2mE2

1

i
~“J1J“ !G

1e3¹2n1e4na11. ~7!

Please note that the occurrence of current contributions;J
breaks explicitly the time invariance. These terms app
with the same coefficiente1 as the effective mass and ener
contribution in order to ensure Galilean invariance. The d
sity dependenceaÞ1 deviating from the one arising b
Skyrme three-body contact interaction has been introdu
and compared with experiments in Ref.@13#.

II. DERIVATION OF GENERAL RESPONSE FUNCTION

We start the derivation of the response from the quan
kinetic equation for the density operator in relaxation tim
approximation

ṙ̂1 i @ Ê1V̂ext,r̂ #5
r̂LE2 r̂

t
, ~8!

where the relaxation is considered with respect to the lo
density operatorr̂LE or the corresponding local equilibrium
~LE! distribution function

f LE~p,R,t !5 f 0S «0„p2Q~R,t !…2m~R,t !

T~R,t ! D ~9!

with the ~Fermi-Bose! distribution f 0. „The quasiclassica
Landau equation follows from the gradient expans
(]/]t) f 1]pe] r f 2] re]pf 52 @( f 2 f LE)/t#.… This local
equilibrium is given by a local chemical potentialm, a local
temperatureT, and a local mass motion momentumQ. These
local quantities will be specified by the requirement that
expectation values for density, momentum, and energy
the same as the expectation values performed withf.

A. Conservation laws

From Eq.~9! we see that the conservation laws for de
sity, momentum, and energy are fulfilled if the correspon
ing expectation value of the collision side vanishes
e
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(
p

~ f 2 f LE!50,

(
p

p~ f 2 f LE!50,

(
p

«~ f 2 f LE!50. ~10!

Taking this into account we can express the deviation of
observablesf51,p,« from equilibrium consideringd f 5 f
2 f 05 f 2 f LE1 f LE2 f 0 as

df~q,v!5(
p

fd f ~p,q,v!

5(
p

f~ f LE2 f 0!

5(
p

f

f 0S p1
q

2D2 f 0S p2
q

2D
«0S p1

q

2D2«0S p2
q

2D
3F2dm2q

]«0

]p
dQ2

«02m

T
dTG , ~11!

where we have performed Fourier transformt→2 iv and r
→ iq. In the last line we restrict to thelinear responseof Eq.
~9!. We assume for simplicity a homogeneous equilibriu
f 0„«0(p)… such that only the deviationsdf(r ,t) and
d f (p,r ,t) are space dependent. This is no principle rest
tion but otherwise many later algebraic expressions wo
take the form of integral equations. Further,dQ(q,t)
5qdQ(q,t) is employed. With the abbreviation

af5(
p

f

f 0S p1
q

2D2 f 0S p2
q

2D
«0S p1

q

2D2«0S p2
q

2D
5gf~0!,

bf5(
p

fq •

]e

]p

f 0S p1
q

2D2 f 0S p2
q

2D
«0S p1

q

2D2«0S p2
q

2D
5gfq]p«0

~0!,

cf5(
p

f
«02m

T

f 0S p1
q

2D2 f 0S p2
q

2D
«0S p1

q

2D2«0S p2
q

2D
5

1

T
gf«0

~0!2
m

T
gf~0!, ~12!
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and the correlation function

gf~v!5s(
p

f

f 0S p1
q

2D2 f 0S p2
q

2D
«0S p1

q

2D2«0S p2
q

2D2v2 i0

~13!

we can write the deviation of the observables from equi
rium according to Eq.~11! explicitly

dn52dma12dQb12dTc1 ,

dJq5q•dJ52dmaqp2dQbqp2dTcqp ,

dE52dmae2dQbe2dTce . ~14!

Instead of the vector equation for the currentJ we consider
the projection onto the direction ofq. This simplifies matters
as long as we have no active media andJuuQ.

B. Response from kinetic equation

To derive the response function we will obtain a seco
equation set from linearizing the kinetic equation~8! and the
corresponding balance equations. Fourier transformt
→2 iv and r→ iq; the equation~8! can be linearized

2 ivd f 1 i F«0S p1
q

2D2«0S p2
q

2D Gd f

2 i F f 0S p1
q

2D2 f 0S p2
q

2D G@Vext1~V01V4p2!dn

1p"qV1dJq1V2dE#

52
d f

t
1

1

t

f 0S p1
q

2D2 f 0S p2
q

2D
«0S p1

q

2D2«0S p2
q

2D
3F2dm2q•

]«0

]p
dQ2

«02m

T
dTG . ~15!

In Eq. ~15! the mean-field contributionsVi will lead just to
self-consistency. The coefficientsVi are linked to parametri-
zation ~7! as

V05
d«0

dn
5e22e1

q2

2
2e3q21~a11!n0

ae4 ,

V15
d«0

dJq
52

2e1

q2 ,

V25
d«0

dE
52me1 ,

V45e1 . ~16!

We can solve Eq.~15! for d f and perform momentum
integrations to obtain the observablesdn, dJq , dE. This
leads to the following closed equation system:
-

d

IS dn

dJq

dE
D 5BS dm

dQ

dT
D 1VS dn

dJq

dE
D 1S g1

gpq

ge

D Vext ~17!

together with set~14!

S dn

dJq

dE
D 5AS dm

dQ

dT
D . ~18!

The matrices are

V5S g1V01gp2V4 gpqV1 g1V2

gpqV01gp2pqV4 g(pq)2V1 gpqV2

geV01gp2eV4 gepqV1 geV2

D
v1

i
t

,

B52S d1 e1 f 1

dpq epq f pq

de ee f e

D ,

A52S a1 b1 c1

apq bpq cpq

ae be ce

D , ~19!

and the abbreviations are introduced

df5
2 i

vt1 i FgfS v1
i

t D2gf~0!G ,
ef5

2 i

vt1 i Fgfq]peS v1
i

t D2gfq]pe~0!G ,
f f5

2 i

vt1 i

1

T H gfeS v1
i

t D2gfe~0!

2mFgfS v1
i

t D2gf~0!G J ~20!

in terms of the correlation function~13!. The required solu-
tion is obtained from Eqs.~17! and ~18! as

S dn

dJq

dE
D 5~I2V2BA 21!21S g1

gpq

ge

D Vext ~21!

from which one can read off the response functions~3!. This
is the main result of the paper which represents the den
momentum, and energy response including nonlinear m
fields and collisions with the fulfillment of density, momen
tum, and energy conservation.

C. Alternative expressions

Before we continue to consider special cases, we wo
like to express solution~21! in a slightly more familiar form.
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1. Response in terms of mean-field response

First we assume that we have solved the response wit
collisionsB50 which would obey the equation

~I2V!j05Gnext, ~22!

wherej5$dn,dJq ,dE%, next5$Vext,0,0%, and

G~v!5S g1 gpq ge

gpq g(pq)2 gpqe

ge gepq gee

D . ~23!

Then the response matrix~3! without collisions but self-
consistent mean field reads

XMF~v!5~12V!21G~v!. ~24!

The missing part of the full solution of Eqs.~17! and ~18!
including the collisions are given byj5j01z where we
have forz

~12V2BA 21!z5BA 21j0 . ~25!

Some algebra leads to the final response

X~v!5XMFS v1
i

t D
3F12G 21S v1

i

t DBA 21XMFS v1
i

t D G21

.

~26!

2. Response in terms of polarization function

The opposite case is the usual way we first solve the eq
tion without self-consistency by the mean field. This leads
the polarization functionP5$P,PJ ,PE% which we use to
represent the response function which includes s
consistency. Without mean field we have from Eq.~21!

~I2BA 21!j05Gnext, ~27!

leading to the polarization function

P~v!5~12BA 21!21GS v1
i

t D . ~28!

The response function can be represented analogously to
~26!

X~v!5P~v!H I2G 21S v1
i

t DVP~v!J 21

. ~29!

The generalization of the usual formx5P/(12VP) for
simple mean fields can be recognized.

III. CALCULATION OF RESPONSE FUNCTIONS

In the following we consider some frequently occurrin
situations. Therefore we assume only quadratic dispers
«5p2/2m in the correlation function. To consider the fu
quasiparticle~Skyrme! energy would correspond to the se
consistent quasiparticle random-phase approximation w
ut

a-
o

f-

q.

ns

h

we do not want to consider here. The schema of how
include this is clear after the following considerations. W
understand in the following the mass as effective mass gi
by e1 in Eq. ~7!.

The different occurring correlation functions~13! can be
written in terms of moments of the usual Lindhard polariz
tion functionP0

Pn5sE dp

~2p!3
pn

f 0S p1
q

2D2 f 0S p2
q

2D
p•q

m
2v2 i0

~30!

as follows:

g15P0 ,

gpq5mvP0 ,

ge5
P2

2m
,

gep25
P4

2m
,

gp2pq5mvP2 ,

g(pq)252mq2 n1m2v2P0 . ~31!

For practical and numerical calculations we can rewr
Pn by polynomial division into

P252mn1
m2v2

q2 P01P̃2 ,

P452
14

3
m2 E02

nmq2

4 S 11
4m2v2

q4 D2
m4v4

q4 P̃0

2
2m2v2

q2 P̃22P̃4 , ~32!

where theP̃ i are the projected moments perpendicular toq
and read

P̃25E dp

~2p!3 S p2
p•q

q2
qD 2 f 0S p1

q

2D2 f 0S p2
q

2D
p•q

m
2v2 i0

52mE
2`

m

dm8P0

'2mTP0 ,
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P̃45E dp

~2p!3 S p2
p•q

q2
qD 4 f 0S p1

q

2D2 f 0S p2
q

2D
p•q

m
2v2 i0

52~2m!2E
2`

m

dm8E
2`

m8
dm9P0

'8m2T2P0 . ~33!

The corresponding last identities are valid only for nond
generate, Maxwellian, distributions with temperatureT. The
general form of polarization functions is presented as an
tegral over the chemical potentialm of the Lindhard polar-
izationP0. This is applicable also to the degenerate case
the following we will discuss successively further involve
results; first for nondegenerate plasmas and then for de
erate nuclear matter.

A. Polarization with collisions: Inclusion of density
and energy conservation

Now we concentrate on the response function with
mean field and consider only the collisions within dens
and energy conservation. Then the matricesA andB reduce
to 232 matrices. The calculation of Eq.~27! leads to

Pn,E~v!5~12 ivt!S g1S v1
i

t Dg1~0!

h1

2vt i
@heg1~0!2h1ge~0!#2

h1~he
22heeh1!

D , ~34!

where we use the abbreviation

hf5gfS v1
i

t D2vt igf~0!. ~35!

With the help of Eqs.~31!–~33! this can be further worked
out in terms ofPn but does not lead to a more transpare
form. Let us note that the first term in Eq.~34! represents jus
the result if we would have considered only density cons
vation known as the Mermin polarization function@3#

Pn~v!5~12 ivt!

g1S v1
i

t Dg1~0!

h1
. ~36!

Of course, the limit of vanishing collisionst→` ensures
that the Lindhard resultP0(v) appears since

lim
t→`

hf

12 ivt
5gf~0!. ~37!
-

-

In

n-

t

t

r-

B. Polarization with collisions: Inclusion of density
and momentum conservation

Next we consider the special case where the density
momentum are conserved. Then the matricesA andB reduce
again to 232 matrices and the calculation of Eq.~27! leads
to

Pn,J~v!5~12 ivt!

g1S v1
i

t
D 2

FgpqS v1
i

t
D G2

h(pq)2

h12

FgpqS v1
i

t
D G2

h(pq)2

g1~0!.

~38!

We have used the fact that according to Eq.~31! gpq(0)
5gepq(0)50 andhf is defined as in Eq.~35!. With the help
of Eq. ~1! we obtain in this way a slightly modified Mermin
dielectric function~36!.

C. Polarization with collisions: Inclusion of density,
momentum, and energy conservation

Considering all three conservation laws the result fro
Eq. ~29! is

Pn,J,E~v!5~ ivt21!S ivt
N

D
2g1@0# D , ~39!

with

N52H gepqFv1
i

tGg1@0#2ge@0#gpqFv1
i

tG J 2

1h(pq)2$g1@0#~he2g1@0#2hege@0# !

1ge@0#~h1ge@0#2heg1@0# !%, ~40!

D5gepqFv1
i

t G H h1gepqFv1
i

tG2hegpqFv1
i

tG J
1gpqFv1

i

t G H heegpqFv1
i

tG2hegepqFv1
i

t G J
1h(pq)2$he

22heeh1%. ~41!

This result together with the former special cases~36!, ~34!,
~38! are compared in Fig. 1. One sees that the first appr
mation of Mermin ~36! is almost identical with the resul
~34! where density and energy is conserved. The inclusion
density and momentum conservation~38! brings the curves
towards the Lindhard result without collisions compar
with the inclusion of density conservation only. Finally, th
complete result with the inclusion of density, momentu
and energy conservation~39! changes the results again in th
direction of the result for density and energy conservat
but is less pronounced. This qualitative behavior of the d
ferent approximations is observed for other relaxation tim
too.
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The effect of relaxation times within the complete res
~39! is seen in Fig. 2. One recognizes that with decreas
relaxation time or increasing collision frequency the plasm
peak is shifted towards smaller energies. For collision f
quencies around the inverse plasma frequency there occ
resonance seen in the real part of the dielectric func
~middle part of Fig. 2!. This translates into an enhance
single particle damping~lower panel! and the system be
comes optically thick. At the same time the collective mo
the plasma frequency, becomes enhanced. One can con
this as an effect of transferring collisional energy into colle
tive motion. We have here a coherent superposition betw
collision frequency and collective frequency resulting into
enhancement of collective motion. Compared with the g
eral effect of collisions to increase the damping of collect
motion, see Fig. 1, this is the inverse effect which narro
the collective peak again.

D. Response with collisions: Simple mean field

For the case of simple but density-dependent mean fi
V0Þ0 and V15V25V450 we obtain for the density re
sponse from Eq.~29!

x5
P

12V0P
. ~42!

Here P is the polarization function without mean field b
with collisions. Dependent on the choice one may use E
~34!, ~38!, or ~39! for the latter one.

FIG. 1. The dielectric function«512VP for a one componen
plasma system in different approximations. The inverse De
length isk254pne2/T and the energyv is scaled in plasma fre
quenciesvp

25k2T/m. The relaxation time is chosen arbitrarily a
t55/vp and the wave vectorq50.384k. The uppermost pane
shows the excitation function.
t
g
n
-
s a
n

,
ider
-
en

-

s

ds

s.

Since the imaginary part of the response function~42! is
related to the photoabsorbtion yield on nuclei we like
apply the different approximations~34!, ~38!, or ~39! for
nuclear isovector oscillations. We use first a simplifi
Skyrme parametrization@14# for V0 according to Eq.~47!
and a relaxation timet within a Fermi liquid model@15,16#.
From Fig. 3 we see the same qualitative behavior of
different approximations as found in Fig. 1. The differen
between the density~density-momentum! and density-energy
~density-energy-momentum! result is very small~insets of
Fig. 3!. An increase of temperature leads to larger damp
of all approximations~bottom of Fig. 3!. While the density
or density-energy result leads to a pronounced damping
the giant resonance the inclusion of momentum conserva
diminishes this effect again towards the free result.

Let us note that the energy-weighted sum rule~EWSR!

2
1

pE0

`

dvv Im x5
q2

2m
n0 ~43!

is fulfilled numerically for all approximations, however, th
convergence is very bad for response including density
density and energy conservation. The inclusion of mom
tum conservation in turn improves the convergence of
sum rule appreciable.

E. Response without collisions: Skyrme mean field

First we consider the case where we have only Skyr
mean fields. Then the matrix equation~22! is solved with the
result for the density response function

e
FIG. 2. The dielectric function«512VP for a one component

plasma system with the inclusion of density, momentum, and
ergy conservation~39! for different relaxation times. The param
eters are the same as in Fig. 1.
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FIG. 3. The imaginary part of the respons
function Imx for nuclear giant dipole resonance
in different approximations~compare Fig. 1!. The
wave vector q50.23 fm21 ('0.17 kF) corre-
sponds to the inverse diameter of the nucle
208Pb according to Ref.@17#. The inlays show an
enlarged view of the difference between the de
sity (n), density-energy (n-E), and density-
momentum (n-p), density-momentum-energy
(n-p-E) approximation, respectively.
i
ld

ty
xMF~v,Vi !

5
P0

12P0V̄01
V2V4

2m
@P2

22P0P4#2P2F V2

2m
1V4G

~44!

with

V̄05V01
mv~mvV11V3!

nmq2V111
. ~45!

For isovectorial oscillations one has

V05
d«0

dn
5V0

s2V1
s q2

2
,

V15
d«0

dJq
52

2

q2 V1
s ,

V25
d«0

dE
52mV1

s ,

V45V1
s , ~46!

where theVi
s are representing the Skyrme parametrization

nuclear matter@1#

V0
s52t0S x01

1

2D2
t3

6 S x31
1

2Dn0
a2

q2

16
@3t1~112x1!

1t2~112x2!#,
n

V1
s5

1

8
@ t2~112x2!2t1~112x1!#. ~47!

If we use the definitions of Ref.@1# which are related to ours
as

P̃05P0 ,

P̃25P22
q2

4
P0 ,

P̃45P42
q2

2
P21

q4

16
P0 , ~48!

we obtain the result of Ref.@1# which was slightly misprinted

xMF5
P0

12P̃0Ṽ0
s22V1

sP̃21~V1
s!2@P̃2

22P̃0P̃4#
~49!

with

Ṽ0
s5V0

s2
m2v2

q2

2V1
s

122n0mV1
s ~50!

for nuclear matter densityn0.

F. Response with collisions: Inclusion of density conservation
and Skyrme mean field

Now we derive the combined result from the mean-fie
response~44! and collisions. We restrict first only the densi
balance conservation@first term of Eq.~34!# to get from~11!

dm52
dn

a1
52

dJq

apq
52

dE

ae
, ~51!
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FIG. 4. The imaginary part of the respons
function Imx for nuclear giant dipole resonance
~see Fig. 3! in different approximations. Consid
ering the Skyrme interactions SGII@1,18# we
compare the full mean-field response with col
sional correlations in density~dotted line! and
density, momentum, and energy approximati
~dashed line!, respectively, with the collision-free
mean-field response~solid line! for two different
temperatures.
.

p
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R

and in Eq.~21!

BA 215S d1

a1
0 0

0
dpq

apq
0

0 0
de

ae

D . ~52!

Therefore we can solve Eq.~29! and obtain, similar to Eq
~44!,

xn~v!5~12 ivt!
g1~0!

h1
xMFS v1

i

t
,Ṽi D ~53!

with

Ṽ05~12 ivt!
g1~0!

h1
V0 ,

Ṽ15~12 ivt!
gpq~0!

hpq
V15H V11o~vt!21

01o~vt!,

Ṽ25~12 ivt!
ge~0!

he
V2 ,

Ṽ45~12 ivt!
g1~0!

h1
V4 . ~54!

We should note that the mean-field potentialV1 arising from
the current and effective mass is of a different level of a
proximation than the collisional contribution which we r
stricted in Eq.~52! to the density conservation. This incon
sistency is visible in the final result forṼ1 in Eq. ~54! where
the limit of vanishing collisionst→` does not agree with
-

the limit of finite collisions sincegpq(0)[0, see Eq.~31!.
ThereforeṼ15V is proposed to ensure the limit of vanishin
collisions.

G. Response with collisions: Inclusion of density, momentum,
and energy conservation and Skyrme mean field

The Skyrme response can be given also for the other c
including energy and momentum conservation. Howev
this does not lead to a more transparent form than the gen
matrix structure~29!. Considering the standard effectiv
Skyrme interaction SGII@18# in Fig. 4 we compare the com
plete result~21! including energy, momentum, and densi
conservation~dashed line! with the result including only
density conservation~53! ~dotted line!. In the result one we
have proposed forṼ1 the collision-free valueV1 in order to
ensure the correct limiting case.

We find again the same behavior for the different appro
mations as in the case of the simplified mean field~Fig. 3!.
The inclusion of collisions leads to an enhanced damp
and a shift of the collective peak towards smaller energ
This effect of collisions is less pronounced by the full mea
field result including density, momentum, and energy cons
vation ~solid line!. The increase of temperature leads to
broadening of the resonance structure~lower part of Fig. 3!
in any case.

Again we have checked our results to satisfy the EWS

2
1

pE0

`

dvv Im x5
q2

2m
n0~11k!, ~55!

with the enhancement factork

k5
m

4
@ t1~21x1!1t2~21x2!#n0 . ~56!
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Here k occurs as a consequence of the momentu
dependent terms in the Skyrme interaction and is define
the deviation from the Thomas-Reiche-Kuhn sum rule in
case of isovector giant dipole resonance@19,20#.

The result~44! which contains the full Skyrme mean fiel
but no collisions is in excellent agreement with Eq.~55!. The
approximation~53! including collisions but only density con
servation conserves the sum rule only'75% which is a
consequence of the inconsistency of Eq.~54!. The inclusion
of density, momentum, and energy conservation~21! con-
serves the sum rule~55! again completely.

IV. SUMMARY

In this paper we have derived the unifying response fu
tion including nonlinear mean fields~Skyrme! and collisional
correlations. Within this approach one can share correlat
between an energy functional of mean-field~Skyrme! param-
etrization and explicit dissipative correlations condensed
the relaxation time. This allows us to also treat dissipat
effects in density functional approaches. We see that
known limiting cases are reproduced neglecting either co
sions or mean fields. Special transparent cases of the u
ing response are discussed.

For a nondegenerate plasma, numerical results are
sented. The first order correction given by the Mermin
sponse, incorporating only the density balance, is simila
the approximation where density and energy are conser
ys

ys
-
as
e

-

ns

n
e
e

i-
fy-

re-
-
o
d.

The plasmon peak is shifted towards smaller frequenc
This is accompanied by an enhanced damping. The inco
ration of momentum balance diminishes this effect of co
sions.

We observe that an enhancement of the collective m
occurs for collision frequencies near the collective~plasma!
frequency. This is the inverse effect of damping due to c
lisions in that the collisions become resonant and the col
tive mode is enhanced. We consider this as collisional n
rowing. Since the momentum conservation is responsible
that effect we suggest that the physical origin is the same
sometimes discussed with motional narrowing. We wo
like to stress that this narrowing is observed relative to
broadened mode due to collisions and did not reach
collision-free value. Consequently we have collisional dam
ing every time but near the resonant situation this collisio
damping is diminished.

Similar behavior is found for the case of nuclear matt
where the collective mode is the giant resonance. For isov
torial giant resonances we checked the extended en
weighted sum rules and find excellent completion. The
sponse due to nonlocal mean fields is derived including
effect of collisional correlations.
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